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Preliminary Aquatic Life Stressor Identification Data for Southeast Ohio
Introduction

Aquatic Life uses are the narrative ecological goals that states set for each of their waterbodies. Ohio is
unique in having numeric biocriteria for each of the tiered stream uses in its Water Quality Standards
(WQS) regulations. Impairment of these aquatic life uses as measured by biological indices usually drives
the listing of impaired waters as required by section 304(l) of the Clean Water Act (CWA). The listing of
such “impaired” waters drives the development of total maximum daily loads (TMDLs) of pollutants and
other management activities necessary to restore these waters. Scientifically sound identification of
contributing stressors is integral to this process.

In Southeast Ohio, because of extensive mining, acid mine abatement plans (AMDATSs), developed by
Ohio DNR and partners are an important tool to restore acid-impaired waters. It is important to both the
TMDL and AMDAT programs that impaired waters and watersheds are accurately identified and that the
relative contribution of each stressor to this impairment is quantified. While biological data excels in
integrating the impacts of multiple stressors, it is difficult to use this data by itself to completely
characterize stressors responsible for impairment. Similarly, data on stressor data can be invaluable for
identifying with some precision the relative contribution of individual stressors, but by themselves can
be poor predictors of biological conditions.

The data included in this report was derived as part of the basis for developing a stressor identification
guide for Southeast Ohio. The complete manual will provide step-by-step guidance to help scientists
identify the key stressor impairing aquatic life in Southeast Ohio and should include information on fish
assemblages, macroinvertebrates (at multiple scales of taxonomic resolution), and on algal assemblages.
This effort is a step towards that manual and provides some initial baseline data and analytic
approaches and tools that will eventually comprise an approach and tool box for a comprehensive
assessment of factors limiting streams and rivers in Southeast Ohio.

This effort provides the following products:

1) weighted stressor and/or average stressor values (WSVs or ASVs) for fish
species and macroinvertebrate genera using Statewide data and separately for
the Western Allegheny Plateau (WAP) level Il ecoregion of Southeast Ohio;

2) tolerance indicator values (TIVs) calculated using WSVs and/or ASVs for fish
species and macroinvertebrate genera using Statewide and separately for the
WAP ecoregion;

3) data on fish species and macroinvertebrate genera, for each key stressor,
Statewide and in Southeast Ohio, paired with presence or absence of each fish
species and macroinvertebrate genus than can be used to generate logistic
regression models;
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4) data on fish species and macroinvertebrate genera, in approximately equal-
sized bins (20) for each key stressor, Statewide and in Southeast Ohio, paired
with percent of sites with the presence of each fish species and
macroinvertebrate genus than can be used to generate smoothing curves to
visually classify the shape and form of the response to each stressor; and

5) an estimate of approximately 20 or so of the most sensitive and tolerant fish
species and key stressors important to the mined areas of the WAP ecoregion
that can form the basis for an atlas of stressor-response relationships between
these species and key stressors.

This document provides descriptions of the data in each of these tables and a description of how they
can be used in stressor identification efforts. It also describes some of the limitations of the data and
analytical approaches. Stressor identification efforts improve over time as stressor identification studies
supplement the knowledge base on site specific stressor-response relationships. The accrual of data and
analyses are important because they provide a template for understanding biological responses in
characteristically complex multi-stressor watersheds. Because stressors rarely occur alone in nature and
because natural underlying environmental conditions vary spatially with geology, land use, stream size,
gradient, groundwater and surface water regimes, soils, elevation, latitude, and subecoregion, the
relative contribution of stressors may be similar in general effect, but moderated or exacerbated by one
or more natural factors. Similarly, anthropogenic effects can change over time with a lessening of some
stressors (e.g., point sources), but changes in other factors such as the extent and nature of land
development. The potential effects of some of these anthropogenic changes are relatively well known
(e.g., urbanization, mining) while others have little data available (e.g., effects from fracking).

Background

The absence of impact cannot be readily inferred from a lack of elevated stressor data, especially where
impacts may be episodic (e.g., Belluci et al. 2010). Biological data as response indicators, combined with
stressor data as indicators of causative agents, can be used in a complementary fashion to characterize
aquatic life impairments using a weight of evidence approach. An analogy for this approach is one of a
coarse vs. fine focus on a microscope. Biology is the coarse focus that lets you identify the location and
magnitude of impact and stressor data is the fine focus that allows one to get a clear picture of the
object. Biological data without associated stressor data would leave you with a rather unfocused picture
of the object of interest; stressor data without biological data would make it difficult to find and feel
confident that you are focused on the object of importance.

Ohio has one of the most extensive biological, habitat, and chemical monitoring data sets for streams
and rivers with over 25,000 data collection events statewide. Much of this data reflects co-current
collection of fish and macroinvertebrate data, habitat data as measured by the QHEI and water
chemistry data that includes nutrient parameters and dissolved oxygen, dissolved and suspended
materials parameters and toxicants including metals and ammonia. Our initial focus in this study is on
providing species and taxa based stressor-response data as a basis for future analyses and expansion of
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this effort. A long-term goal would be an atlas of species/taxa responses to stressors that can be
delivered in both report form and on the internet.

More detailed and formal stressor identification methods have been developed by U.S. EPA (USEPA
1999) and are a great resource for conducting stressor identifications. The web site supporting this
process, which we have borrowed from for this document is also a great resource:
http://www.epa.gov/caddis/si_stepl overview.html. Their process is outlined in Figure 1. The data we

provide here can be used in the Caddis process or in other less formal approaches to stressor
identification. The key data products of this study will be

provided as Excel data files by species or taxon of interest [ Dotect or Suspect Botogieatimparment |

and by stressor with the following sections providing J L

.. Stressor Identification
descriptions of the data and examples of how the results ,{ ”
can be used. For fish and macroinvertebrates we have _ List Candidate Causes |
. N o . . Decision-maker L As Necessary:
also summarized information on the most useful indicator and c Acquire Data,
) ) ] Stakeholder valuate Elztz'l'run the Caze | and
fish species and macroinvertebrate taxa for Invo Evaluato Data from Esewbors | Nerale Frocess
understanding typical mining and mining-related impacts. ¥
Identify Probable Cause |
Habitat data is also provided because it reflects the -
template within which species live. The frequent = idenity and Apportion Sources <4
Fi H H H H ini Management Aclion:
modification of habitat associated with mining and other Pl oo gee Ao o ests |

human activities make it an important contributing factor | Biological Condition Restored or Prolected |«

to understanding direct and indirect mining impacts. Our Figure 1. Summary flow chart of the stressor

goal is for investigators to be able to apply these data to identification process from US EPA (1999).
watershed study results in the WAP ecoregion of

Southeast Ohio.

Biology as Stressor Indicators

The initial role of biological data is as a response indictor that integrates the effects of all of the stressors
that influence the biota in a stream reach. Ohio has institutionalized the condition of the assemblage
considered impaired in its biocriteria, which vary with aquatic life use tier (EWH, CWH, WWH, MWH,
LRW), ecoregion, and stream size (Ohio EPA 1989, 1991). It is the impairment of one or more biological
measures (e.g., ICl, IBI, Mlwb) that triggers a causal analysis to identify the causes of biological
impairment in Ohio.

Biological Impairment

It is the impairment of biological criteria in Ohio that triggers a causal analysis. The biocriteria as derived
a baseline benchmarks for different ecoregions and stratifications (e.g., stream size) that have been
derived to account for natural and widespread baseline anthropogenic differences across Ohio (see later

I”

section on WQS). The biocriteria account for most, but not all “natural” differences across the State, so
there are a small subset of sites that may be impaired by “natural” limitations not accounted for in the
derivation of the biocriteria. One common natural limitation is what can be termed “wetland” streams.

These are where wetland habitats are extensive and they may limit attainment of the WWH biocriteria

3
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in certain ecoregions. This does not include short low gradient reaches interspersed with more typical
habitats which should be able to attain regional benchmarks. Similarly, small streams with falls or dams
that preclude recolonization by fish populations may not be able to attain a WWH aquatic life use. In
these cases more weight would be place on macroinvertebrate assemblages. The proper placement of a
stream in an aquatic life tier though a use attainability analysis (UAA) is a routine, but essential part of
the process for determining biological attainment and must be done prior to establishing impairment or
stressor identification efforts.

The Technical Support Documents (TSDs) of Ohio EPA are reports that summarize this process for Ohio
streams, rivers and watersheds studied by Ohio EPA. In fact the existence of a TSD for a watershed is a
typical first step in examining data collected by an entity such as a watershed group, consultant, or
researcher. Most TSDs can be found online at the Ohio EPA, Division of Surface Water web site:
http://www.epa.state.oh.us/dsw/document index/psdindx.aspx. This web site also contains other

technical resource documents that can be useful to identifying stressors in Ohio waters:
http://www.epa.state.oh.us/dsw/document _index/docindx.aspx.

Stressor identification analyses can be very detailed and include information derived from a wide range
of disciplines including aquatic ecology, biology, hydrology, geology, geomorphology, statistics,
chemistry, and toxicology. The level of detail is typically related to the complexity of the impacts. For
many impacts however, the stressor identification process can be used with very general tools (e.g., fish
or macroinvertebrate assemblage data, habitat and simple chemical results). Recently, the inclusion of
diatom and algal assemblage data has further advanced stressor identification, particularly for mine
drainage scenarios (Zalack et al., 2010). In this report we will not discuss the specific steps of a stressor
identification effort which will be an integral part of a more extensive stressor identification guide.

Ohio Data

The data used in generating the species and taxon-specific measures of sensitivity was taken from a 30-
year+ data set from Ohio. Although data was primary collected by Ohio EPA it also contains data
collected by Ohio DNR, Ohio DOT, Universities (e.g., Ohio University), the Midwest Biodiversity Institute,
and some consulting company data. Ohio data consists of fish and macroinvertebrate assemblage data
collected with standard Ohio EPA methods (Ohio EPA 1989a) and includes both “raw” data (species
occurrence and counts or presence/absence data) and “summarized” data (Index on Biotic Integrity [IBI]
and metrics for fish; Invertebrate Community Index [ICl] and metrics for macroinvertebrates). Habitat
data is based on the Qualitative Habitat Evaluation Index (QHEI)(Rankin 1995; Ohio EPA 2006) and a
subset of variables designed to measure habitat metrics influenced by flow (Hydro-QHEI; Rankin and
Yoder 2011). Water chemistry data includes parameters collected during intensive watershed surveys
and includes ionic parameters (e.g., conductivity, total sulfate, total, chloride, etc.), pH, dissolved oxygen
and BOD, temperature, hardness, alkalinity, nutrients (total phosphorus, nitrate, total ammonia, organic
nitrogen) and metals (most measured in their total form). This data was collected during summer grab
samples for a station with frequency of collection ranging from 1-10 samples depending on parameter
and study design. For a subset of sites, stream flow statistics (e.g., mean annual, mean September, etc)
were estimated from USGS regression models (Koltun et al. 2006). The above stressors include most of
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the key stressor responsible for the majority of aquatic life impairments in Ohio. Other stressors can
cause impairment to aquatic life that would not necessarily be found in routine monitoring data.
Examples of these are more exotic toxicants (e.g., organic chemicals). Our analyses here use water
column chemistry data, but fairly extensive sediment chemistry data also exists. This data is important in
mined areas, and should be included in future data mining efforts for more complete stressor
identification efforts. These should be considered when performing a stressor identification study. The
nature of the biological response can provide some insight into the nature of these other stressors (e.g.,
toxic responses such as increase deformities, lesions, tumors and another anomalies on fish and
invertebrates).

It is quite likely that one or more of the above chemical stressors may be responsible for impairment,
but not be reflected in the summer grab samples, usually due to the episodic nature of chemical events.
Industries and waste water plants can have upsets and spills, and delivery of pollutants from agricultural
and mining sources may be weather related (e.g., storm, snow melt). As will be discussed later, habitat
impacts can occur at multiple scales and good local habitat may be not sufficient to support sensitive
species when other sites in the watershed are severely degraded. Impacts in urban areas can be
particularly complex with mixes of stressors include flashy flows, accumulations of metals and other
toxicants in sediments, and more exotic chemicals that may run off of industrial and other impervious
sites (e.g., PCBs, PAHs). In most urban areas of Ohio, combined sewer overflows (CSOs) can deliver a
complex mixture of nutrients, metals, bacteriological, and other constituents that can have serious
impacts on aquatic life. In urban areas, other sources of information (e.g., in situ studies) may be
important to nail down responsible stressors prior to requiring as costly mitigation approach (Crane et
al. 2007). The remainder of this documents summarizes the development of species- and taxon-specific
data that can be used in a stressor identification effort.

Species and Taxon-Based Stressor Tolerance Measures

A variety of methods have been used to measure the sensitivity of individual fish species or
macroinvertebrate taxa to stressors in streams. Most multimetric indices use metrics that reflect the
general intolerance or tolerance of species and taxa to “general” environmental stress. “General” or
“cumulative” environmental stressor is conceptually considered to be the sum of the non-natural
stressors that might occur at a site or in a watershed and the assumption is that most “intolerant” or
“tolerant” species respond in a similar manner to multiple stressors that make up this cumulative
“stressor load” on the assemblages. Although this concept has proved accurate and useful under real
world conditions and for measuring attainment of aquatic life use goals, the relative magnitude of
response of different taxa and species to specific stressors does vary. Species vary in response due to
differing life history attributes and evolutionary exposures to similar categories of stressors under
natural conditions. Differing diets, for example (insectivore vs. herbivore vs. omnivore) have resulted in
differing natural exposures to types of chemicals (e.g., natural toxicants) that occur in natural prey items
and may pre-adapt a species to be more or less sensitive to these compounds. Tolerance to these
natural “toxic” compounds may have made these species more tolerant to synthetic or extracted
toxicants discharged as components of industrial wastes. Similarly, species adapted to high oxygen
mesohabitats (e.g., riffles, runs) may be more susceptible to pollutants that reduce these pollutants, or

5



MBI Stressor Data for Southeast Ohio Nov 15, 2012

to nutrient parameters that can lead to reductions of oxygen as micro-organisms assimilate these
compounds. Such species are often considered to be “generally” sensitive. In this effort we are focusing
on species-specific (fish) or genus-specific (macroinvertebrates) data.

Weighted Stressor Values (WSVs) and Average Stressor Values (ASVs)

In this document we provide data on tolerance using what are called “Weighed Stressor Values” (WSVs)
and Average Stressor Values (ASVs). These are included as Excel files of WSVs for fish species (Appendix
1) and Excel files of ASVs for macroinvertebrates at the genus level (QUAL samples, Appendix 2). For
macroinvertebates the lowest practicable is the level of taxonomic resolution used by Ohio EPA and for
the Invertebrate Community Index (ICl) which form part of the Ohio biocriteria. The genus taxonomic
level is used in a wide variety of indices including the MAIS index (Smith and Voshell 1997), also used in
the WAP ecoregion of Ohio. We provide genus level results for this study, but future work will include
Excel files of WSVs for macroinvertebrates from the HD sample data at the Ohio EPA level of taxonomic
resolution.

Tolerance Indicator Values (TIVs)

Although WSVs and ASVs are important for examining the influence of individual stressors on
tolerance/intolerance, differing measurement scales among variables makes it difficult to compare
WSVs among stressors. For example, QHEI ranges from 10-100, D.O. from 0 to approximately 20 mg/I
and pH typically ranges from <1-9 SU. To improve the ability to compare stressors or groups of sensitive
or tolerant species we also standardized WSVs and ASVs by converting them to an ordinal ranking scale
of 1-10 for each taxa and stressor, where 1 indicates the upper or lower 10" percentile that reflects the
most sensitive conditions and 10 the lower or upper 10" percentile rank that represents the most
tolerant conditions for each species or taxon. These values can be used to compare sensitivities to
different stressors and to create stressor indices for categories of stressors along a standard scale of
values (1-10). In addition, we generated TIVs values for other statistics including the median, and the
10" 25" 75" and 90" percentiles and an average of all the TIVs (weighted mean, median and
percentiles). This “average” TIV measure incorporates variation by ranking and integrating multiple
statistics that reflect differing magnitudes or variation in the sensitivity to a stressor. For example, two
species can have a similar TIV for a stressor based on a WSV, but one may have a greater range of
sensitivity reflected in a higher TIV for the 25" percentile statistic. In this document we are focused on
the Western Allegheny Plateau ecoregion, but also compiled statistics separately at a statewide level
because some species and taxa have too few collections in the WAP for stable WSV or ASVs.

Using the Excel WSV/TIV Files

Included with this report are a series of Excel files that contain WSV and TIV files for Ohio fish species
(Appendix 1) and macroinvertebrate taxa (Appendix 2). These files include data for combinations of
species or taxa and each stressor variable we analyzed. We conducted these analyses at two spatial
scales: 1) statewide, and 2) separately for sites in the WAP ecoregion. Data for each row in the tables
includes species/taxa codes and names, parameter name, sample size, and statistics including weighted
means (for data with abundance data), mean, median, and percentiles (lOth, 25" 75t median) and
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minimum and maximum values for both statewide and WAP ecoregion data. These files also include TIV
values separately for each statistic and an average of the weighted mean, mean and percentile statistic
TIVs. Weighted stressor values (WSVs) or average stressor values (ASVs) are the “raw” measure of
association with a stressors, whereas the TIVs are the ordinal ranking of the WSVs on a scale of 1-10
with 1 being most sensitive and 10 most tolerant.

Presence/Absence vs. Relative Abundance Measures in Species Tolerance Analyses\We are using two
types of ambient data to assess species tolerance or sensitivity to environmental factors and stressors:
1) taxon or species abundance estimates (e.g., WSVs), and 2) taxon or species presence or absence data
(e.g., logistic regression approaches). In Ohio we have relative abundance data on fish species. For
macroinvertebrates we have relative abundance data to lowest practicable taxonomic resolution for
data collected with Hester Dendy (HD) artificial samplers, but also “qualitative” presence-absence data
from all sites with HD samplers and also for streams too small to sample with HD samplers (e.g.,
generally less than 10 sqg mi) or where a more qualitative assessment was deemed sufficient. In addition,
all data with relative abundance data can be analyzed as presence-absence data. For this effort we
focused on qualitative samples (“QUALs”) data because they are collected at all sites and are used in
smaller streams too shallow to place HD-samplers. These small stream sites (i.e., generally less than 10
sq mi) are abundant and are often sites critical to identifying and understanding the contribution of
mine impacts in a watershed.

Species abundance estimates can vary substantially due to both stressor and natural variation in the
environment, but also as a result of sampling issues. Seining for fish can be very effective in shallow, low
cover pools and gravelly riffles, but can be wildly ineffective in deep pools or pools with complex cover
or undercut banks. The majority of the data used here was collected with standardized pulsed-DC
nethods as standardized by Ohio EPA (1987), methods that have reduced inefficiency. Presence/absence
data is typically less variable; however, species that occur in low numbers because of natural rarity or
because they are made rare by stressor effects may be considered absent at a site, but actually be
present in low numbers. Multimetric indices such as the IBl minimize some of this variation by using
combinations of species (i.e., metrics or guilds) rather than rely on single species.

One obvious difference between these types of the data is the inclusion of “absence” data. Weighted
stressor averages only use data from sites where a taxa or species was collected. Sites with zero
abundances are not represented in a weighted average value. The inclusions of zeros (absence) data in
presence-absence data assumes that if a species was not collected at a site it does not exist there, but
should. For our analyses here we refined this a bit by only including absence sites if: 1) the taxa/species
was collected elsewhere in the same Huc-11 watershed and 2) the site was within the 10"-90" percent
of sites where the species has been collected by drainage area size. Thus we exclude absences where
the taxa/species may not occur because of biogeography (outside of the normal species range
distribution) and exclude absences because streams are smaller or larger than the waters it typically
inhabits. Because we are interested in being able to rank species relative sensitivities, and we are using
the same universe of sites to calculated weighted averages or other measures, we are assuming errors
or bias in this approach would be relatively similar across species (Yuan 2006), allowing robust rankings
of sensitivity and tolerance to individual stressors.
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Logistic Regression Analyses & Smoothing Curve Fits
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such a gradient (Figure 2, bottom) and it is these - A

differences that we are “exploiting” to understand ) . y . - 2

biological responses to stressors and for conducting SI Temperature

analyses. Figure 2 (bottom) portrays responses to a Figure 2. Theoretical unimodal distribution of a species
typical natural variables as unimodal; however, species along a temperature gradient (top) and

hypothetic distributions of species with
different sensitivities (bottom) (taken from
for example by decreasing linearly or curvilinearly Yuan 2006).

may respond in other ways to anthropogenic stressors

(monotonically) responding to toxicants or increasing

linearly or curvilinear to certain habitat features. Yuan (2006) points out that a monotonic response may
be evident when an incomplete stressor gradient is examined (e.g., the tails of Figure 2, top).We
employed two main “indirect” methods to characterize species responses to environmental variables: 1)
smoothing curves using binned stressor-response data and 2) logistic regression techniques.

Smoothing Curves

Smoothing curves using binned data provide a tool to illustrate species responses to environmental and
stressor variables. To construct these plots data is binned to 20 approximately equally-sized bins (based
on sample size) and the average stressor value is calculated for each bin. These stressor values (midpoint
of each bin) are then plotted vs. the proportion of sites in which the species or taxa is present within
each bin (Figure 3). For fish (Appendix 3) and macroinvertebrate data (genus-level, Appendix 4) we
provide Excel files for each stressor that contains: the stressor value midpoint of each bin and the
proportion of sites where the taxa is present for each bin. Each Appendix contains two Excel files, one
for statewide results and other for the WAP ecoregion separately. Figure 3 (top) illustrates smoothing
curves for a habitat sensitive fish species (black redhorse) and a habitat tolerant fish species (fathead
minnow) in response to the overall QHEI score. Note that we derived bins based on approximately equal
sample sizes rather than using equal divisions of bins based on the stressor variable. The frequency of
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points along the stressor axis, thus also provides Sensitivity of Fish Species to Habitat
0.7 T

Bldck Redhorse

some information relative to a species’ sensitivity.

If relatively few of the points fall in a certain

portion of the curve it may indicate that species is
sensitive to that level of stressor. For example in
Figure 3 (top), only two of the twenty bins (points)
for black redhorse occur below a QHEI of 50 and

Probability of Capture

these represent mostly “absences” (presences <
10%). Conversely, for fathead minnow six bins

occur below QHEIs for 50 and represent where

fathead is more frequently present (25-55%; Figure 100
3, top). QHEI Score

Sensitivity of Macroinvertebrate Species to Habitat
1

Although we provide data for each taxa statewide Stenacron (Stats:%:wi;:le)‘

and separately for the WAP ecoregion, many of the
taxa we examined have similar responses using
each data set as in illustrated for Stenacron
(mayfly genus) and Laccophillus (predacious diving
beetle genus) responses to habitat (Figure 3,

Luccophilus ($tat

Probability of Capture

bottom). Given the larger sample sizes, for some ewide)

0.2 7 S
genera it may be preferable to use statewide data :‘\'3:.5

So.e_
| . e
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where data are sparse in the WAP ecoregion in the

binning dataset. 100

QHEI Score

Using the Excel Smoothing Curve Data Table Figure 3. Smoothing curves fit to binned data of QHEI score
vs. probability of capture of a fathead minnow and
black redhorse (statewide data, top) and for two

Because of the large number of possible smoothing
macro genera (bottom).

plots than can be done with this dataset (# of

stressors x number of species+taxa) we are Sensitivity of Fish Species to Habitat (QHEI)
1 I \ 1 1

including the data in Excel format so that a user .
Smoothing Weight |

can select and plot any taxa or species of 08 L 0.00
interest (Appendices 3 and 4). Files in this

iteration of the report are included for fish data
at the species level and macroinvertebrate data
at the genus level from qualitative samples.

Probability of Capture

There are files for statewide results and for the
WAP ecoregion separately. Data includes

columns that identify the stressor, the species or

0 20 40 60 80 100

QHEI Channel Score

L . . Figure 4. Smoothing curve fit to binned data of QHEI channel
within this range where the species or taxon was score vs. probability of capture of a fish species. Lines

present. It also includes a column with a count of demonstrate forms of curves using differing averaging
or smoothing weights.

taxon, and columns that contain the midpoint
value of the stressor bin, the percent of sites

the total sites where the species was present, total
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sites (absent + present), and the number of sites represented in each of the twenty intervals or bins.

There are twenty rows of data for each species/taxon and stressor combination. A species or taxon was

included only where there were at least 50 presences at the statewide or WAP geographic scale. Note

this is a larger sample-size threshold than we used for WSV or ASV analysis, thus some species may be
included in the WSV tables, but not included in the binned dataset.

Constructing a Curve

There are a number of software packages that will fit a smoothed curve to a set of x-y data. In addition

one can use nonlinear regression tools to fit curves to such data. We will demonstrate plotting a

smoothing curve using the KaleidaGraph v4.1 (copyright 2009, Synergy Software). There are a number of

smoothing functions that can be applied to the data using this tool, but we used a weighted smoothing

curve. It allows you to modify what is called the smoothing factor, which controls the fraction of the

data considered during smoothing. The smaller the value, the more individual points affect the final

curve. Typical values are between 33 and 66. The minimum value is zero and the maximum value is 100.

Figure 4 illustrates the application of a smoothing curve to binned data on shorthead redhorse and QHEI

channel score. We applied smoothing curves with each of the four weights mentioned above. A weight

of zero typically provides a line that passes through each point. The graphs in this effort generally were

done with a weight of 0.66 which illustrates the curvilinear shape of the response, but reduces the

effects of individual outliers.
Non-Linear Regressions

Where some specific non-linear function is
hypothsized for a stressor-response relationship
there are software products that will apply a
wide variety of non-linear functions to the data
and provide output to measure goodness of fit
of these curves. We used a software package
called XLSTAT (XLSTAT Version 2012.5.01,
Copyright Addinsoft 1995-2012) to fit a non-
linear function to data for smallmouth bass
collection probability with QHEI (habitat) scores
(Figure 5). The equation of this regression is: Pct
Occurence = 173.6*QHEI
Midpoint/(18446.7+QHEI Midpoint) and the r’
for this regression model is high at 0.97. There
are a nearly unlimited number of mathematic
functions that could be fit to the data and a
large literature on selecting curves that provide

Pct Occurence

09 +

08 +
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05 T

04 +
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02 T

0.1

Nonlinear regression (Pct Occurence)

20 30 40 50 60 70 80 90
QHEI Midpoint

® Active
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Figure 5. Non-linear curve fit to a plot of binned QHEI data vs.

percent occurrence for smallmouth bass in Ohio.
Statewide data.

the best fit. Because our data for these analyses is binomial (presence/absence) we chose to use logistic
regression rather select from a number of non-linear models. Where there is some theoretical response
curve that is expected, non-linear regression may be appropriate; however given our data we are relying
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primarily on the logistic approach for quantifying probabilities and smoothing curves for visualizing the
shape of the biological response to stressors.

Logistic Regression Techniques

Logistic regression is typically used when the response variable of interest is in binary form, in our case
the presence (1) or absence (0) of a species or taxon. Presence data is readily obtained because of the
presence of a species or taxon in a collection at a site. Identification of the absence of a species in a
collection is more problematic. A species may be absence because of the stressor of interest has
reduced or eliminated the species; this is the pattern we are attempting to extract out of this data.
Conversely there is some probability that a species is actually present, but not collected because of
chance or low population numbers at a site result in low collection probabilities. As long as these
probabilities are similar along the gradient of the stressor or represent a response to the stressor
(probability of capture is lower because the stressor magnitude is greater) then the logistic regression
should provide a useful description of the response. The value of the logistic regression is that it
provides an explicit equation related to the probability or odds of capture along a given stressor
gradient. Thus the equation can be used to predict or explain the absence of presence of a species given
a specific level of a stressor in the environment. It can be interpreted as the how the odds or probability
of occurrence changes with increases in the stressor.

Figure 6 illustrates logistic regressions for smallmouth bass vs. QHEI (habitat) statewide (top) and
separately for the WAP ecoregion (bottom). One way to ascertain the accuracy of the regression is to
take a subsample of the data and examine how accurately the model classifies the presence or absence
given a random model (Table 1). We used a 40% correct classification as a cutoff for a “good” regression.
Confidence bands can also be derived around the logistic curve (Figure 6). Thus for smallmouth bass,
both statewide and in the WAP ecoregion, increases in QHEI scores increase the probability of capture
of this species. For QHEI scores in the 20s (very poor habitat) there is less than a 10% chance of
capturing a smallmouth bass. Although it is not reflected in this data, our experience and knowledge of
the data indicate that smallmouth bass collected at sites with very poor habitat tend to be young-of-the-
year. Conversely, sites with QHEI scores of 90 or higher (best habitat) have smallmouth bass present in
about 90% or more of the collections. Thus smallmouth bass are strongly habitat dependent which
agrees with our biological judgment and the extensive literature on this species.
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Table 1. Classification table for the estimation sample for the logistic regression
of smallmouth bass presence (1) or absence (0) vs. QHEI score for

Stressor Data for Southeast Ohio

Statewide data (top) or from the WAP ecoregion (bottom).

from\ to 0 1 Total |% correct
0 1228 1406 2634  46.62%

1 619 3526 4145 85.07%
Total 1847 4932 6779| 70.13%
from\ to 0 ) Total |% correct
0 174 207 381 45.67%

1 76 521 597| 87.27%
Total 250 728 978| 71.06%

Nov 15, 2012

12



MBI Stressor Data for Southeast Ohio Nov 15, 2012

Smallmouth Bass - Statewide
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Figure 6. Logistic regression plots of QHEI vs. presence/absence probability for smallmouth bass
at a statewide level (top) and for the WAP ecoregion (bottom). Lines reflect the
logistic model and 95% confidence boundaries

13



MBI Stressor Data for Southeast Ohio Nov 15, 2012

Problems with Logistic Regression Approach

One problem that arose with the logistic regression approach vs. the weighted stressor data is that some
of the species ranked as sensitive or tolerant with the weighted stressor approach did not have a
classification correction frequency of greater than 40%, particularly when classifying a species as being
correctly present. This occurred despite a species being considered very sensitive on the basis of
weighted stressor results and other observations (e.g., distributional studies). For example, with the
shorthead redhorse (Figure 7, top) there was a strong classification estimate with the likelihood of being
present correctly predicted 79.5% of the time in test data. In contrast, black redhorse, considered a very
habitat sensitive sucker using weighted means only had a correct test classification estimate of 37.6%,
slightly under our cutoff of 40% even though confidence bands were narrow (Figure 7, bottom). Other
tests of significance; however, related to the logistic regression including the log-likelihood, Wald and
Hosmer- Lemeshow estimates showed significant results (P-values <0.001).

Another example is provided by examining creek chub and fathead minnow response to habitat. While
sensitive species show a strong increase in collection frequency, several habitat tolerant species show a
much less steep or rather a flat response to habitat stressors (Figure 8, top). In other words the
probability of capture of creek chubs is high in poor habitat (minimum prob. ~ 0.60), but only slightly
better in streams with good habitat (maximum prob. ~ 0.9) than observed with the sensitive shorthead
redhorse species (minimum prob. ~ 0.05% -> maximum prob. ~ 0.90%, Figure 7, left). Fathead minnow
was one of the few species where the probability of capture was actually higher in poor habitat
(maximum prob.~0.70%) than in the best habitat (minimum prob. ~ <0.10%; Figure 8, bottom).

An issue with the use of the 40% classification cutoff for a significant model is that species such as the
fathead minnow and black redhorse were below this cutoff. Unfortunately the cause of this test
“failure” does not appear to be associated with the trend along the stressor gradient (note the tight 95%
confidence intervals for the models), but rather with our original method of predicting the presence or
absence of a species for use in our analyses. Classification test success (>40 correct cutoff) appears to be
related to our ability to have “base” models where prediction of presence is greater than 70% at some
point along a stressor gradient. Where we have a high frequency of absences even with a strong
gradient in these curves (again reflected in the tight error bands) it is difficult to reach the 40% correct
classification cutoff.

We used two factors in creating our base prediction for computing absences from Ohio data collections:
1) we censored sites below the 10™ or above the 90™ percentile of the species distribution with stream
size (i.e., drainage area, sq mi), and 2) censored data (absences) based on biogeography by excluding
sites where the species was not collected elsewhere in the same Hucl1 watershed. For certain species
that are patchy, but have a wide geographic distribution it can be difficult to predict their absence or
presence at all levels of the stressor. For example, fathead minnow can be predominant in some regions
(e.g., HELP ecoregion) in streams with poor habitat, but absent sporadically enough in poor habitat in
other ecoregions (where they occur, but more sporadically), so they do not exceed 90% occurrence
levels anywhere along the gradient. Conversely, shorthead redhorse and smallmouth bass predictably
occur at near 90% frequency as streams with the highest QHEI scores throughout their ranges. Based on
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the way the classification test works smallmouth bass and shorthead redhorse meet the 40% cutoff, but
fathead minnow, black redhorse and creek chub do not. A more refined distributional model would
likely include other factors (e.g., gradient, scale of habitat loss) that might result in more accurate
predictions of presence/absence. In a relative sense; however, as along as presence and absence of a
species is not biased along the gradient, other tests of logistic model significance may be more
meaningful.

Classification tests have been suggested as being most appropriate when classification is the objective of
a study (Homer and Lemeshow 2000). Our goal with the logistic regression; however, was not
necessarily the ability to predict a classification, but rather to quantify the shape, magnitude and
direction of a species or taxon’s response to a stressor along a stressor gradient in order to identify and
distinguish sensitive and tolerant species. We know for example that in regions such as the WAP,
fathead minnow are present, but more sporadic in distribution. In the HELP ecoregion lack of fathead
minnow in channelized streams would be surprising. In the WAP ecoregion they are more commonly
found in habitat degraded streams, but not universally so. The Hosmer-Lemeshow test may be a more
appropriate test of the response of a species along a stressor gradient. This test divides the stressor
gradient into 10 groups and compares the goodness of fit between the predicted (no trend) and
observed values along the stressor gradient. In the absence of a more refined species or taxonomic
model, and an assumption that absences not related to the stressor do not change substantially along
the stressor gradient, this test may be more meaningful. These other test of significance; however, also
need to be tempered because the large sample sizes for some species could result in patterns that are
statistically, but not biologically meaningful. Creek chub, for example show a significant model with
habitat (positive trend); however the high occurrence at sites with the very poor habitat (QHEI scores
less than 20) indicates that these are tolerant to poor habitat. The presence of tolerant species at very
good sites is not unexpected, because they tend to inhabitat small patches of marginal or poor habitat
with a template of rich habitat features. Those species that show classification tests greater than 40%
may still be useful as key ubiquitous species in the sense that even a rather simple distributional model
can provide reliable stressor-response signals under a variety of environmental conditions. We suggest
that the identification of sensitive or tolerant specie and taxa may be best done using WSVs or ASVs and
tempered with logistic regression results and knowledge of life history attributes and site-specific
studies.

Biologically-based Stressor Metrics

The identification of the relative sensitivity of various species or taxa can be used to derive stressor-
specific biological metrics that should be particular sensitive to the stressor used to derive the relative
sensitivity or tolerance to these stressors. We calculated species richness metrics by selecting cutoffs of
TIV values to identify sensitive or tolerant species for each stressor. These metrics can then calculated
for individual sites and compared to results from reference sites. Such metrics can be calculated for any
stressor and organism group, but for our purposes here we calculated example stressor-specific taxa
richness metrics (sensitive and tolerant) for several key mine drainage parameters including
conductivity, pH, alkalinity, total manganese, and total aluminum and three habitat parameters: overall
QHEI score, QHEI substrate and QHEI channel scores.
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Figure 7. Logistic regression plots of QHEI vs. presence/absence probability for shorthead redhorse (top) and
black redhorse (bottom). Lines reflect model and 95% confidence boundaries.
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Figure 8. Logistic regression plots of QHEI vs. presence/absence probability for creek chub (top) and fathead
minnow (bottom). Lines reflect model and 95% confidence boundaries.
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We used the statewide data to select the cutoff values for the weighted mean (fish) or average
(macroinvertebrates) TIV for each stressor and species (fish) or genus (macroinvertebrates) to identify
taxon as intolerant, (TIV =1), sensitive (TIV >1 and < 2), tolerant (> 9 and < 10) or very tolerant (TIV=10).
We then calculated taxa/species richness for all sites in the Ohio database.

Selecting an Array of Sensitive and Tolerant Fish Species for Mine-Affected Waters

One objective of our work was to select approximate 20 fish species that reflect specific sensitivity or
tolerance to mine-related stressors as useful indicators during stressor identification efforts. Our first
plan was to use the results of logistic regression analyses to identify such species, but problems related
the efficiency of the classification test suggested that we should not rely on that data alone. Instead we
used the TIVs of species-specific weighted stressor values to a suite of common mine parameters and
habitat variables and will use logistic regression results in a supporting role. Tables 2 and 3 list the fish
species that were classified as sensitive or tolerant to a suite of commonly collected mine parameters
(ph, chloride, sulfate, Mn, Al, conductivity and three habitat parameters that are often affected by
modifications to streams in mined areas (total QHEI and QHEI channel score) or by high levels of
exported sediments that affect the bedload (QHEI substrate score). We categorized sensitive species
into two classes using the weighted mean TIV: intolerant (TIV=1, upper 10%), sensitive (TIV=2, 11-20%)
and tolerant species into two classes: tolerant (TIV=9, 80-89%) or very tolerant (lower 10%).

Table 2. Species considered sensitive to typical mine parameters (ph, chloride, sulfate, managanese, aluminum
and conductivity, along with key habitat parameters and a count for parameters to which a species is
sensitive or tolerant. Data from wadeable streams the WAP ecoregion.

Mine Parameters Habitat Variables Count
Species IBI # #
Code Species Name Tol. | Ph | Chl | Sulf | Mn | Al | Cond | QHEI | Subs | Chan | Sen | Tol
43 035 MIMIC SHINER [ S S S S S | S S | 6 0
01 007 | AMER BROOK
LAMPREY R S | | | | 5 0
80 007 | SLENDERHEAD
DARTER R | | | S | I | S 5 0
43 031 | STEELCOLOR SHINER P | | | | | | | 4 0
47 008 | STONECAT
MADTOM | S S S S S S S 4 0
80 013 EASTERN SAND
DARTER R T | | | S 4 1
80 017 | VARIEGATE DARTER | | S [ S | 4 0
01 006 | LEAST BROOK
LAMPREY v S v ! S 3 2

40 009 | BLACK REDHORSE [ S S S | | | 3 0

43 005 RIVER CHUB [ I S S S S | 3 0

43 021 | SILVER SHINER [ S S S S S S 3 0

43 022 ROSYFACE SHINER | S [ S | S | 3 0

47 012 BRINDLED MADTOM | | S S 3 0
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To illustrate the usefulness of these “biological stressor” richness metrics we plotted the number of
sensitive species at each site (intolerant + sensitive) for each stressor vs. 1) the original stressor value at
each site, and 2) the IBI score at each site (Figures 9-11). We saw relatively sharp threshold relationships
for each stressor metric when plotted against both the stressor and IBI. These species appear to be
useful indicators that are also related well to the overall Ohio fish IBl index. The distinct limiting
thresholds indicate that the presence of high numbers of these sensitive species for each stressor
indicate concentrations or levels where the stressor is not limiting and associated with assemblages that
meet Ohio WQS as measured by the biocriteria. Such thresholds can be defined using quantile
regression through the 90" or 95" percentiles of the data (Cade and Noon 2003).

Table 3. Species considered tolerant to typical mine parameters (ph, chloride, sulfate, managanese, aluminum
and conductivity, along with key habitat parameters and a count for parameters to which a species is
sensitive or tolerant. Data from wadeable streams the WAP ecoregion.

Mine Parameters Habitat Variables Count
Species IBI # #
Code Species Name Tol. | Ph | Chl | Sulf | Mn | Al | Cond | QHEI | Subs | Chan | Sen | Tol

10 004 LONGNOSE GAR T Vv Vv T \Y S 0 5

20 003 GIZZARD SHAD T \Y T T T 0 5

43 020 EMERALD SHINER T V Vv Vv Vv 0 5

80 004 DUSKY DARTER M Vv V Vv V Vv 0 5

47 005 BROWN BULLHEAD T V T V T T Vv 0 4

47 006 BLACK BULLHEAD P T T T T V Vv T 0 4

77 005 SPOTTED BASS Vv Vv \Y \Y 0 4

80 014 | JOHNNY DARTER Vv T T T 0 4

43 002 GOLDFISH T \Y V T V \Y V 0 3

43 003 GOLDEN SHINER T T V V T Vv T 0 3

43 015 SUCKERMOUTH

MINNOW v T v T 0 3

43 025 STRIPED SHINER Vv T T 0 3

43 039 SILVERJIAW

MINNOW \Y \Y, T T 0 3

43 042 FATHEAD MINNOW T T V T V Vv V 0 3

80 | 001 | SAUGER T T T S 0 3

85 001 FRESHWATER

DRUM P Y Vv \Y 0 3

Each of these species richness metrics (Figures 9-11) could be assigned score (e.g., 0-10, or 1-3)
depending on responses and combined into a type of AMD-specific multimetric or IBI score. Prior to the
creation of such a multimetric stressor index we would want to also explore tolerant (“negative”) metric
responses and examine the response of proportional metrics (e.g, percent of sensitive or tolerant
individuals). This could also be extended to the macroinvertebrate genus-level data. The files included as
part of this product (TIV data in Appendix 2) would provide the tolerance designations for constructing
these indices.
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Figure 9. Plots of conductivity (top), chloride (middle) and sulfate (bottom) sensitive species vs. actual stressor variables (left) or

fish IBI (right) for sites in the Western Allegheny Plateau ecoregion of Ohio; wadeable sites only.
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Figure 10. Plots of manganese (top), aluminum (middle) and pH (bottom) sensitive species vs. actual stressor variables (left) or
fish IBI (right) for sites in the Western Allegheny Plateau ecoregion of Ohio; wadeable sites only.
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Figure 11. Plots of QHEI (top), substrate (middle) and channel (bottom) sensitive species vs. actual QHEI variables (left) or fish IBI

(right) for sites in the Western Allegheny Plateau ecoregion of Ohio; wadeable sites only.
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Using Reference Sites Stressor Levels in Stressor Identifications Efforts

Ohio has used the “reference site” approach (e.g., Stoddard et al. 2006) to determining of aquatic life
use attainment/impairment in Ohio streams and rivers. Ohio was an early adopter of the “reference” site
approach for assessing the biological quality of streams. Accounting for natural variation in aquatic
assemblages at reference sites increases the ability to identify anthropogenic stressors (e.g., alteration of
stream flows, habitat) that might affect aquatic condition. For warm water streams, Ohio stratifies aquatic
assemblages based on level Il ecoregions, which are geographically dependent, and stream size, which is
geographically independent. Stream size is accounted for by having separate fish indices for headwater,
wadeable and boatable waters and explicitly calibrating metric expectations by the log of drainage area in
many of the metrics used in both the fish and macroinvertebrate indices (IBI, ICI). Ohio also uses water
temperature as an important classifying factor embodied in a separate suite of coldwater aquatic life uses
(see below), that include lists of characteristic species or taxa found in coldwater streams.

Comparison of chemical or other stressor levels at study sites can be compared to reference site levels or to
levels association with ranges of biological performance as measured by the IBl and ICl to estimate the risk
that the stressor may be exerting on the aquatic assemblages. Ohio EPA (1999) has developed ranges of
stressors (Appendix 1 from Ohio EPA 1999) at biological reference sites (REF; excerpt in Table 4) where
increases in the magnitude of stressor values represent increasing levels of risk of impairment. In addition,
Ohio associated stressor values with ranges of the fish 1Bl scores using all available data (ALL; excerpt in
Table 5) to create a companion set of “background” values specifically associated with good and excellent
biological indices and with a larger dataset than the reference dataset alone. This section was included
because the result of the stressor identification efforts using individual species or taxon responses are best
done hand-in-hand with an analysis of reference or background stressor concentrations which provide
insight into what stressor levels might be reasonably attainable depending on aquatic life use.
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Table 4. Excerpt from Ohio EPA (1999) Appendices illustrating reference site statistics for conductivity in stream of four
stream size classes.

Appendix |. Ohio EPA Water Column Chemistry Statistics for Reference Sites (excluding urban and physically modified sites) by
Ecoregion and Stream Size.
Sample 75th 90th 95th Median Median
IBI Range Size Median %tile %tile %%tile +1.5'IQR  + 2"IQR

Parameter: Conductivity, Field (umhos/cm)

Ecoregion: WAP

Headwaters 93 375.000 573.750 789.000 1251.500 673.1250 772.500
Lg. River 79 610.000 900.000 1050.000 1263.000 1045.0000 1190.000
Sm. River 64 686.000 189.500 900.000 972.400 841.2500 893.000
Wadeable 195 390.000 500.000 800.000 920.000 555.0000 610.000

Table 5. Excerpt from Ohio EPA (1999) Appendix 2 illustrating site statistics (ALL data) for conductivity in the WAP ecoregion
by IBI range in headwater streams.

Appendix 2. Ohio EPA Water Column Chemistry Statistics for ALL Sites in the Ohio EPA Database by Ecoregion, Stream Size,

and IBI Range.
Sample 15th 90th 95th Median Median
IBI Range Size Median %tile %tile %tile +151QR  + 2*IQR
Ecoregion: WAP
Headwaters
12-19 12 990.000 1450.000 1978.000 2634.000 1680.0000 1910.000
20-29 26 1160.000 1440.000 2088.000 2549.000 1580.0000 1720.000
30-39 46 498.500 930.000 1487.500 2144.000 1145.7500 1361.500
40-49 7 475.000 600.000 750.000 1100.000 662.5000 725.000
50-60 39 375.000 580.000 682.000 757.500 682.5000 785.000
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Water Quality Standards (WQS)

Water quality standards (WQS) are an essential cornerstone of water quality management. WQS

consist of designated uses and chemical, physical, and biological criteria designed to represent

measurable properties of the environment that are consistent with the characteristics and level of
protection specified by a designated use. In Ohio these are codified in OAC 3745-1. Use

designations consist of two broad categories, aquatic life (ALUSEs) and non-aquatic life uses. WQS to meet
aquatic life use criteria frequently are more stringent than WAS to meet non-aquatic life uses, so waters
that meet aquatic life criteria generally are suitable for all uses. Therefore, State water quality
management programs commonly focus on aquatic life uses.

The Ohio WQS employ a tiered system of refined aquatic life use classifications (TALUs), which is different
from the “one-size-fits-all” approach of general uses that are common to many states’ WQS.

Tiered uses are based on the reality that reference aquatic assemblages vary locally and regionally, thus
their management goals should vary accordingly. The tiered system also offers the opportunity to stratify
water quality management goals and end-points, hence reducing the risks of under-protection or over-
protection that is inherent to a general use approach. In the Ohio WQS there are five principal aquatic life
uses currently designated, which are described as follows.

1) Warmwater Habitat (WWH) - this use designation defines the “typical” warmwater assemblage
of aquatic organisms for Ohio rivers and streams and biocriteria are stratified by ecoregion and
site-type’; this use represents the principal restoration target for the majority of water resource
management efforts in Ohio. By number, 77.4% of waters are WWH (Ohio EPA 2004).

2) Exceptional Warmwater Habitat (EWH) - this use designation is reserved for waters which
support “unusual and exceptional” assemblages of aquatic organisms which are
characterized by a high diversity of species, particularly those which are highly intolerant
and/or rare, threatened, endangered, or special status (i.e., declining species) - biocriteria
are set uniformly across ecoregions, but are stratified by site-type; this designation
represents a protection goal for water resource management efforts dealing with Ohio’s
best water resources. By number, 10.2% of waters are EWH (Ohio EPA 2004).

3) Coldwater Habitat (CWH-N and CWH-F) - these uses are intended for waters which support
assemblages of native cold water organisms (CWH-N) and/or those which are stocked with
salmonids with the intent of providing a put-and-take fishery on a year round basis which is
further sanctioned by the Ohio DNR, Division of Wildlife (CWH-F); this use is complimented by the
Seasonal Salmonid Habitat (SSH) use which applies to the Lake Erie tributaries which support
periodic “runs” of salmonids during the spring, summer, and/or fall. While there are no numeric
biocriteria for this use designation, specific fish and macroinvertebrate assemblage attributes are
used by Ohio EPA to determine its applicability. By number, 2.4% of waters are CWH (Ohio EPA
2004).

4) Modified Warmwater Habitat (MWH) - this use applies to streams and rivers which have

! Assite type distinguishes between headwaters (<20 mi’), wading (sampled with wading methods), and boat sites
(sampled with boat mounted methods) for fish assemblage assessment purposes.
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been subjected to extensive, maintained, and essentially permanent hydromodifications

such that the biocriteria for the WWH use are not attainable and where restoration to a

CWA goal use has been ruled out via a use attainability analysis; the representative aquatic
assemblages are predominated by species which are tolerant to low dissolved oxygen, siltation,
nutrient enrichment, and poor quality habitat - biocriteria are stratified by ecoregion and site-type;
a use attainability analysis conducted in accordance with 40 CFR 131.10[g][1-6] is required to
designate this use tier. This use includes stream limited by channelization (MWH-C), impoundments
(MWH-I) and by non-acidic mine runoff (MWH-A). By number, 3.8% of waters are MWH (Ohio EPA

2004).

5) Limited Resource Water (LRW) - this use applies to small streams (usually <3 mi.? drainage
area) and other water courses which have been irretrievably altered to the extent that no
appreciable assemblage of aquatic life can be supported; such waterways generally include small
streams in extensively urbanized areas, those which lie in watersheds with extensive drainage
modifications, those which completely lack water on a recurring annual basis (i.e., true ephemeral
streams), or other irretrievably altered waterways - these streams are expected to support poor
quality biological assemblages at a minimum; a use attainability analysis conducted in accordance
with 40 CFR 131.10[g][1-6] is required to designate this use tier. By number, 6.2% of waters are
LRW (Ohio EPA 2004); however, many are very small and represent a small proportion of stream

miles.

Chemical, physical, and/or biological criteria are assigned to each use designation tier in accordance with
the goals and objectives associated with each. As such the system of use designations employed in the

Ohio WQS constitutes a “tiered”
approach in that varying and
graduated levels of protection
are provided by each in
accordance with its
demonstrated potential to
achieve a specific level of
biological performance. This is
best illustrated by the biological
criteria which are stratified
across the state by ecoregion,
site-type, and designated use
(Figure 12). This stratification by
use designation and ecoregion
has also been applied to selected
chemical water quality criteria
including parameters such as
dissolved oxygen, ammonia-
nitrogen, selected heavy
metals, and temperature.
Stressor identification efforts
are best conducted within the

Ohio Biological Criteria: Adopted May 1990
(OAC 3745-1-07; Table 7-15)
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Figure 12. Ohio’s numerical biological criteria (OAC 3745-1-07; Table 7-15) showing the
stratification by level Il ecoregions and site type (fish assemblage indices) and by
tiered aquatic life uses for the fish and macroinvertebrate assemblages. 1Bl =Index
on Biotic Integrity (fish), Mlwb = Modified Index of well-being (fish), ICI =
Invertebrate Community Index; Uses are as defined in the text.
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tiered aquatic life use framework because the vary aquatic life use potential inherent in these tiers informs
the likelihood on these streams having or not having sensitive or intolerant fish and macroinvertebrate
species.

Conclusions

Appendices 1-6 form the core of the products for this contract and this document describes the data
and how the data can be used in stressor identification efforts. We originally envision these data and
tools to be part of a stressor identification guide for streams in Southeast Ohio. We considered this a
beginning effort because there are other statistic tools and techniques that can be applied to this core of
data to help develop stressor identification tools, derive better stressor targets or eventually field-based
water quality criteria. For example, specific statistical methods have recently been proposed as methods
to derive water quality criteria using ambient data like we have in Ohio. In particular the derivation of
field-base species sensitivity distributions (SSDs, U.S. EPA 2010; Cormier wt al. 1998) has been used to
develop water quality criteria for conductivity. An analysis tool called TITAN (Baker and King 2010) has
used species-specific data to derive stressor targets and using a combination of indicator species
analyses and change point analyses.

The generation of a field based SSDs uses what is termed an “extirpation concentration” which is the
concentration where a genus is effectively absent from a region. US EPA (2010) used this approach to
develop a conductivity criteria for the WAP ecorigon. TITAN uses individual species or taxa to identify
maximum indicator values along a stressor gradient and then derives, based on all the species in an
area, biologically meaningful stressor targets (Baker and King 2010). Both of these methods could be
applied to data in the WAP ecoregion of Ohio. The USEPA effort to derive a conductivity criteria for the
WAP ecoregion (USEPA 2010) did not included data from Ohio. Ohio may have a naturally higher
reference or background level of conductivity due to geology than the WAP ecoregion further south. In
addition, their efforts did not considered tiered aquatic life uses which have been existence for 20 years
in Ohio, but have not yet been derived for the other States in this ecoregion.

Other analyses which may improve stressor identification efforts include derivation of historical
modeled fish and macroinvertebrate assemblages for pre-settlement conditions (Armitage et al. 2009).
Armitage et al. (2009) derived historical fish assemblages for the Wabash River based on recent data and
historical records and used a modeling approach to infer historical stressor conditions using WSVs they
had derived for these species. Ohio has derived newer, continuous IBl and ICl indices that account for
potential historical assemblages and that might be more responsive to the range of stressors that
includes the range from extremely severe to pre-settlement conditions (Rankin 2010). Recently,
advanced in modeling stream flows is providing estimates of daily flows that can be used to derive a
suite of flow variables (Poff et al. 2010) that will allow the development of useful flow indicators that
can be incorporated into future stressor analyses.

The data files included here provide the data for conducting sound stressor analyses for Southeast Ohio
streams immediately, but also provide the basis for improving stressor analyses in the future. It will be
important to aggregate and transfer the knowledge derived from current efforts to future work. The
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construction of the beginning of a species and taxon-based atlas of stressor response relationships
provides a solid basis for these efforts in Southeast Ohio.
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